
page 1

Computer Architecture Toolkit

Article 2: simpleADL Software Installation
Pete Wilson

Version 1.06 • May 27, 2017

page 2

1. Introduction 3

1.1. Folder Hierarchy 3

2. Install simpleADL 4

3. Create a new architecture 9

3.1. Running simpleADL 10

3.2. This Release 12

3.3. Limitations 16

...

..

..

...

...

...

...

page 3

1. Introduction
The software that accompanies these articles assumes a few things:

- You’re using a Mac, and you have a sufficiently up-to-date XCode (and its command line tools)
installed on that Mac

- You know the basics of using XCode to build ‘command-line tools’

- You’re comfortable with using the Terminal (no great skill is required)

- A particular folder hierarchy.

The software is provided as a zip’d file.

- Download it, and then double-click it. It should decompress into a folder hierarchy as described
below.

- Move it to where you want.

- Rename the upper level folder if you like (from ArchProjRelx.x to whatever you like) (Do NOT
change the innards of this folder, though)

WARNING: there must be no spaces in the names of any folder in the folder hierarchy containing
ArchProjRelx.x and if you change the name, that name must also have no spaces.

1.1. Folder Hierarchy
The folder hierarchy looks like this, where the outer folder may be called something else (and you can
change its name):

That is, there’s a top folder (ArchProjRel0.2) which is going to hold all this stuff. It contains four folders,
archModels, archTools, docs and kdLibrary, along with a couple of files installadl and releaseadl

• archModels contains a folder for each architecture - here, we have just two (r16 and r32). Each
architecture will contain its own architecture spec, source code and assembler and executable
model. More on this later.

• archTools contains a folder for each tool we have - here, simpleADL, simpleAsm and simpleModel.
simpleADL is the adl compiler. The other two are the canonical assembler and executable model.
Each folder contains also a makefile and a folder which contains an XCode project for the tool.
You can use the XCode project to play with the source code, if you wish.

page 4

• kdlibrary contains a number of projects which provide common functionality - a queue package, a
tokeniser package, a symbol table management package, and a utilities package. These are held in
their own XCode projects; when built, these perform simplistic testing of some elements of the
packages. The .c and .h files in these projects are incorporated by being copied into the simpleADL
project, into the simpleAsm, the simpleModel and into the generated projects. This lets you easily
see the source of the packages in any project, and it also means that if you make changes to the
source of any package, it will NOT be seen by all projects. Be careful!

An architecture, such as r16, has an internal structure:

Each architecture contains three folders.

• One, arch, contains a file arch.adl which specifies the architecture.

• programs contains a pair of folders, bin and src; src contains the (assembler) source of programs of
interest, and bin contains their loadable representations.

• The architecture requires an executable model and an assembler; these are collections of source,
along with a makefile held in model and asm respectively inside the projects folder.

The asm and model folders also have a structure. Here’s that for model:

The files model.c and model.h are created by simpleADL.. makefile contains instructions to compile the
necessary source files.

2. Install simpleADL

page 5

Installing the simpleADL software is pretty straightforward. All you need to do is to open a Terminal
window, cd to the archProjRel folder you’ve just unzipped, and type ./installadl.

If you’ve not played with the terminal before, it’s a program which lets you issue commands to macOS,
just like in the good old days of computing before graphical user interfaces.

You will find a folder called Utilities inside your Applications folder. Open up Utilities and you’ll see
something like this:

Double-click on Terminal.app to run it. You’ll get a boring little window something like this:

page 6

Click in the window, and type cd.

Then open a Finder window and navigate to a view which shows the ArchProjRel folder. Drag that folder
to the Terminal window, directly after the cd. The act of dragging puts the complete path to that folder
onto the line of text, thus:

Bretigny:~ pete$ cd /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2

Now hit return.

This tells the terminal that you want to operate within the ArchProjRel folder.

Type pwd and then return. This tells the terminal to print the current working directory. On my
machine, which is called Bretigny,, we get this

Bretigny:~ pete$ cd /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2
Bretigny:ArchProjRel-0.2 pete$ pwd
/Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2

Now type ./installadl and hit return.

A shell script called installadl which is inside the ArchProjRel folder will be executed. This tidies up files
and copies files into the right places, builds simpleADL and all the other stuff. It’ll ask for your password
during the installation process, but other than that the whole thing gets done in a few seconds.

The script does install programs in a directory in your machine. You may want to
open up installadl in a text editor to satisfy yourself it’s not doing anything naughty.
You should see something like this happen:

Bretigny:ArchProjRel-0.2 pete$./installadl
installadl 0.1v0

setting up tools:
copying files for simpleADL...

Making simpleADL...
rm sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o generateAsm.o
generateModel.o
clang -c -o simpleADL.o simpleADL.c
clang -c -o utilities.o utilities.c
clang -c -o TokUtilities.o TokUtilities.c
clang -c -o TokName.o TokName.c
clang -c -o Tokens.o Tokens.c
clang -c -o symbol.o symbol.c
clang -c -o queues.o queues.c
clang -c -o generateAsm.o generateAsm.c
clang -c -o generateModel.o generateModel.c
echo "making simpleADL as sADL"

page 7

making simpleADL as sADL
clang -o sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o generateAsm.o
generateModel.o
sudo cp sADL /usr/local/bin
Password:

Note that the terminal is asking for your password.
It needs this so the script can copy the simpleADL program into a folder (/usr/local/bin) so it’ll be easily
accessible from the terminal. The password the terminal wants is the one you use when you start up
your Mac. Type it in and hit return. The terminal will continue working. When it’s done, you’ll have text
like this in the terminal:

Bretigny:ArchProjRel-0.2 pete$./installadl
installadl 0.1v0

setting up tools:
copying files for simpleADL...

Making simpleADL...
rm sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o generateAsm.o
generateModel.o
clang -c -o simpleADL.o simpleADL.c
clang -c -o utilities.o utilities.c
clang -c -o TokUtilities.o TokUtilities.c
clang -c -o TokName.o TokName.c
clang -c -o Tokens.o Tokens.c
clang -c -o symbol.o symbol.c
clang -c -o queues.o queues.c
clang -c -o generateAsm.o generateAsm.c
clang -c -o generateModel.o generateModel.c
echo "making simpleADL as sADL"
making simpleADL as sADL
clang -o sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o generateAsm.o
generateModel.o
sudo cp sADL /usr/local/bin
Password:

Copying simpleADL into /usr/local/bin/.. as sADL
copying files for simpleAsm...

making simpleAsm...
rm sAsm asmmain.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o asm.o
clang -c -o asmmain.o asmmain.c
clang -c -o utilities.o utilities.c
clang -c -o TokUtilities.o TokUtilities.c
clang -c -o TokName.o TokName.c
clang -c -o Tokens.o Tokens.c
clang -c -o symbol.o symbol.c
clang -c -o queues.o queues.c
clang -c -o asm.o asm.c
clang -o sAsm asmmain.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o asm.o

Copying simpleAsm into /usr/local/bin/.. as sAsm
copying files for simpleModel...

Making simpleModel...
rm sModel modelmain.o model.o utilities.o
clang -c -o modelmain.o modelmain.c
clang -c -o model.o model.c
clang -c -o utilities.o utilities.c
clang -o sModel modelmain.o model.o utilities.o
sudo cp sModel /usr/local/bin

Copying simpleModel into /usr/local/bin/.. as sModel

page 8

listing architectures:

r16...
copying files for asm...
copying files for model...

Running simpleADL to create the architecture's asm and model source and header files...

Done. Took 3 milliseconds

Making the assembler and copying to /usr/local/bin
rm -f asmr16 *.o
clang -I. -c -o asmmain.o asmmain.c
clang -I. -c -o asm.o asm.c
clang -I. -c -o utilities.o utilities.c
clang -I. -c -o TokUtilities.o TokUtilities.c
clang -I. -c -o TokName.o TokName.c
clang -I. -c -o Tokens.o Tokens.c
clang -I. -c -o symbol.o symbol.c
clang -I. -c -o queues.o queues.c
clang -O2 -o asmr16 asmmain.o asm.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o -I.
sudo cp asmr16 /usr/local/bin

Making the model and copying to /usr/local/bin
rm -f modelr16 modelmain.o model.o utilities.o
clang -c -o modelmain.o modelmain.c
clang -c -o model.o model.c
clang -c -o utilities.o utilities.c
clang -O2 -o modelr16 modelmain.o model.o utilities.o
sudo cp modelr16 /usr/local/bin

r32...
copying files for asm...
copying files for model...

Running simpleADL to create the architecture's asm and model source and header files...

Done. Took 2 milliseconds

Making the assembler and copying to /usr/local/bin
rm -f asmr32 *.o
clang -I. -c -o asmmain.o asmmain.c
clang -I. -c -o asm.o asm.c
clang -I. -c -o utilities.o utilities.c
clang -I. -c -o TokUtilities.o TokUtilities.c
clang -I. -c -o TokName.o TokName.c
clang -I. -c -o Tokens.o Tokens.c
clang -I. -c -o symbol.o symbol.c
clang -I. -c -o queues.o queues.c
clang -O2 -o asmr32 asmmain.o asm.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o -I.
sudo cp asmr32 /usr/local/bin

Making the model and copying to /usr/local/bin
rm -f modelr32 modelmain.o model.o utilities.o
clang -c -o modelmain.o modelmain.c
clang -c -o model.o model.c
clang -c -o utilities.o utilities.c
clang -O2 -o modelr32 modelmain.o model.o utilities.o
sudo cp modelr32 /usr/local/bin

All done.

page 9

Bretigny:ArchProjRel-0.2 pete$
You should read the output to be sure that there are no complaints. (Complaints like this:

rm: sADL: No such file or directory
rm: simpleADL.o: No such file or directory
rm: utilities.o: No such file or directory
rm: TokUtilities.o: No such file or directory
rm: TokName.o: No such file or directory
rm: Tokens.o: No such file or directory
rm: symbol.o: No such file or directory
rm: queues.o: No such file or directory
rm: generateAsm.o: No such file or directory
rm: generateModel.o: No such file or directory
make: *** [clean] Error 1

Are not a problem. The remove-a-file command rm is moaning that it can’t remove a file because it
doesn’t exist)

When this is done, you can run any of the tools, and the assemblers and models for the architectures,
from a terminal window. The assembler for an architecture X is called asmX; its executable model is
modelX. All the tools are placed inside the /usr/local/bin directory, which means you have access to them
by typing their names. The programs installed are

• sADL - the simpleADL compiler

• sAsm - the archetypal assembler

• sModel - the archetypal executable model

• asmr16 - the assembler for the r16 architecture

• modelr16 - the executable model for the r16 architecture

• asmr32 - the assembler for the r32 architecture

• modelr32 - the executable model for the r32 architecture

3. Create a new architecture
To create a new architecture, the simplest thing to do is to

• Duplicate the r16 folder inside ArchProjRel, creating the r16 copy folder

• Rename the r16 copy folder to the name you want to give the new architecture, say my_arch.

• Dive into the model and asm folders inside the projects folder, and delete the Derived Data folder
from each if present.

• Edit arch.adl in the arch folder to reflect the architecture you want

• Run the simpleADL tool, pointing it at your new architecture (by providing the path to the
my_arch folder). Do this in a Terminal window: simply type sADL and then drag the my_arch folder
into the Terminal window and hit return. Correct the inevitable errors. When eventually
executed correctly, simpleADL will write some new files into NewArch’s model and asm folders.

• When it all seems to work, cd back to the ArchProjRel folder and run ./installadl as you did
initially. This will populate your architecture with all the files you need and build the assembler
and executable model for it, and install the programs. [It will also do the same for all the
architectures, but it’s quick enough that this does no great harm].

• Modify the example programs that got copied into your asm folder to match your architecture -
or write new ones.

page 10

• In a Terminal window, type asmmy_arch (or whatever) <name of an asm file> to run your
generated assembler on the specified file, like asmmy_arch simple.asm. Correct the ineveitable
errors, and then execute the assembled file by typing modelmy_arch simple.ldr.

Rinse and repeat.

3.1. Running simpleADL
You can run simpleADL inside XCode. Just double-click on the simpleADL.xcodeproject file inside the
simpleADL folder inside the simpleADL folder:

Proceed as usual. You’ll need to provide simpleADL with arguments, which you do using the
Product:Scheme:Edit Scheme menu and choosing Edit Scheme. The provide the needed argument(s)

However, the simplest way to proceed is to use a terminal window.

If you type sADL into a terminal window, it will respond with usage instructions:

Bretigny:~ pete$ sADL

page 11

 simpleADL [simpleADL 1.0v25]
 using utilities kiva utility functions 1.0v4 May 2017
 using tokeniser package simpleTokeniser 1.0v11 January 2017
 using queue package simpleQueues 1.0v1 [May 8 2017]
 using symbol table symbol table management 1.0v1

 All software copyright Kiva Design Groupe LLC 2017. All rights reserved. See license for terms of
use

 usage:
sADL <options> <path to architecture folder>
options:

 -u -> report release info
 -p -> report parse progress
 -a -> report assembler generation
 -m -> report model generation
 -s -> report statistics

Done.
To generate assembler and executable model for an architecture, type sADL into a terminal window and
drag the architecture’s folder to it, then hit return.

If we do this for the r32 architecture, we get something like this:

Bretigny:~ pete$ sADL /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32

Done. Took 8 milliseconds
Bretigny:~ pete$

You can select any or all of the options by typing them on the commandl ine - it doesn’t matter what
order they’re in. You have to specify each one separately. As an example:

Bretigny:ArchProjRel-0.2 pete$ sADL /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32 -u -s

-u report release info.
-s report statistics.

 simpleADL [simpleADL 1.0v25]
 using utilities kiva utility functions 1.0v4 May 2017
 using tokeniser package simpleTokeniser 1.0v11 January 2017
 using queue package simpleQueues 1.0v1 [May 8 2017]
 using symbol table symbol table management 1.0v1

 All software copyright Kiva Design Groupe LLC 2017. All rights reserved. See license for terms of
use

Number of instructions declared = 23
Number of fields declared = 9
Maximum number of fields per instruction = 5
Symbol Table 'architecture' stats:

Number of symbol queues: 29
Total number of symbols: 35
Average symbols per queue: 1

q0: 0 syms [0.000000x the avg]
q1: 1 syms [1.000000x the avg]
q2: 0 syms [0.000000x the avg]
q3: 2 syms [2.000000x the avg]
q4: 2 syms [2.000000x the avg]
q5: 1 syms [1.000000x the avg]
q6: 1 syms [1.000000x the avg]
q7: 1 syms [1.000000x the avg]
q8: 1 syms [1.000000x the avg]
q9: 1 syms [1.000000x the avg]
q10: 3 syms [3.000000x the avg]

page 12

q11: 2 syms [2.000000x the avg]
q12: 1 syms [1.000000x the avg]
q13: 0 syms [0.000000x the avg]
q14: 2 syms [2.000000x the avg]
q15: 0 syms [0.000000x the avg]
q16: 0 syms [0.000000x the avg]
q17: 3 syms [3.000000x the avg]
q18: 1 syms [1.000000x the avg]
q19: 2 syms [2.000000x the avg]
q20: 2 syms [2.000000x the avg]
q21: 0 syms [0.000000x the avg]
q22: 2 syms [2.000000x the avg]
q23: 0 syms [0.000000x the avg]
q24: 2 syms [2.000000x the avg]
q25: 0 syms [0.000000x the avg]
q26: 3 syms [3.000000x the avg]
q27: 1 syms [1.000000x the avg]
q28: 1 syms [1.000000x the avg]

Done. Took 3 milliseconds
Bretigny:ArchProjRel-0.2 pete$

You can be ‘in’ any folder to run the tools. When you run sADL, the assembler and model files it creates
include information on where the relevant architecture folders are. So you can be anywhere and run
asmr32, for example - it will open the file you specify from the /src folder in the r32 folder hierarchy. This
is good, but limiting for real software development. But no-one develops in assembler, and simpleADL is
only intended as an educational and proof of concept toolkit.

You can get usage information by running the tools without any arguments. So, for the r32 architecture,
we get

Bretigny:ArchProjRel-0.2 pete$ asmr32
asmr32 0.1v17

using tokeniser simpleTokeniser 1.0v11 January 2017
using queue package simpleQueues 1.0v1 [May 8 2017]
using symbol table symbol table management 1.0v1

usage:
-r -> report all activities
-s -> report symbol table statistics

Bretigny:ArchProjRel-0.2 pete$ modelr32

architecture simulator 0.1v6 for 'r32_model 0.1v0'
default bin path '/Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32'

 usage:
 -l -> report load progress
 -r -> report execution (shortform)
 -t -> trace execution (longform)
 -s -> single-step execution.
 <name of file to load> in /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32

Done.
Bretigny:ArchProjRel-0.2 pete$

3.2. This Release
The simpleADL version 0.1v28 improves capabilities compared to previous releases. In particular, it
allows the writing of data in a program, not just instructions, and the provision of code and data
segments. Character constants are also supported, along with named cosntants

This requires minor changes in syntax.

Here’s what a data-using program looks like:

page 13

// example r32 assembler program

/*
versions:
0.1v0

- initial version with data and absolute fixups and code and data segments
0.1v2

- now with character constants and with named constants
*/

title label
memory 0x1000
start 0x10

const ubiquitous = 1034; // named constant declarations
const pussycat = 37;

codeseg

[main]
// some named constants
cpyc r5, ubiquitous;
cpyc r5, pussycat;

cpyc r1, 0; // allows for 12 bit constant
cpyc r2, 1000; // allows for 12 bit constant

[loop]
addc r1, r1, 1;
sub r3, r2, r1;
bne r3, loop;

[finis]
// some named constants
cpyc r5, ubiquitous;
cpyc r5, pussycat;
// some character constants
cpyc r5, 'a';
cpyc r5, 'A';
cpyc r5, '5';
cpyc r5, '\n';
cpyc r5, '\0';
cpyc r5, @datalabel; // point at the data with r5
//cpyc r5, 0x7c;
cpyc r1, 0;
cpyc r2, 32;
outcharc '\n';
outhex r5; // output data start address
outcharc '\n';

[counting]
ld8 r3, r5, r1; // read the byte in mem
outhex r1; // output the address
outcharc '\t'; // space
outhex r3; // the value
outcharc '\n'; // newline
addc r1, r1, 1;
sub r4, r2, r1;
bne r4, counting;

halt;

dataseg
[otherlabel]
[datalabel]

d8 1 2 3 4 5 6 7 8 9 10;
d16 0x1111 0x222 0x3333 0x4444 0x5555 0x6666;

page 14

d32 0x12345678 0x4567890 0x98765 0x77 0x1235;

[lastlabel]
Changes are shown in bolded text; in summary:

• Programs must now declare codeseg before any instructions or data

• Programs must declare dataseg before any data

• Named constants must appear before any codeseg or dataseg

• Character constants are now supported

• Data is declared as a sequence of 1, 2 or 4-byte values by the keywords d8, d16 and d32. Values
may be integers or hex values. The values are space-separated and terminated by a semicolon.
Data items cannot be larger than the instruction size. The assembler may not check for this.

• The absolute address of a label may be captured into any instruction which loads a constant by
using the syntax (e.g.) cpyc @labelname No provision is made for labels whose addresses are
larger in size than permissible constants.

• There is a predefined constant, memTop, which holds the size of the memory system in bytes, as
specified by the assembler file.

The assembler has more options than previously. In particular, it can insert labels into the .ldr file,
commented out (so you can see better where things are). With this option, the .ldr file for the above is

title label.ldr
arch r32
start 0x10
memory 0x1000
codeseg 0x10 0x84
dataseg 0xa4 0xd0
code
// [main] at 0x10

0x40 0xa3 0x00 0xa4
0x02 0x53 0x00 0xa4
0x00 0x03 0x00 0x24
0x3e 0x83 0x00 0x44

// [loop] at 0x20
0x00 0x10 0x84 0x24
0x08 0x00 0x88 0x62
0xff 0x8a 0x00 0x64

// [finis] at 0x2c
0x40 0xa3 0x00 0xa4
0x02 0x53 0x00 0xa4
0x06 0x13 0x00 0xa4
0x04 0x13 0x00 0xa4
0x03 0x53 0x00 0xa4
0x00 0xa3 0x00 0xa4
0x00 0x03 0x00 0xa4
0x0a 0x43 0x00 0xa4
0x00 0x03 0x00 0x24
0x02 0x03 0x00 0x44
0x00 0xae 0x80 0x04
0x00 0x80 0x40 0xa2
0x00 0xae 0x80 0x04

// [counting] at 0x60
0x08 0x0f 0x14 0x62
0x00 0x80 0x40 0x22
0x00 0x9e 0x80 0x04
0x00 0x80 0x40 0x62
0x00 0xae 0x80 0x04
0x00 0x10 0x84 0x24
0x08 0x00 0x88 0x82

page 15

0xfe 0x4a 0x00 0x84
0x00 0x00 0x00 0x02

end

data // start of data segment at 0xa4

// [otherlabel] at 0xa4
// [datalabel] at 0xa4

0x01 0x02 0x03 0x04
0x05 0x06 0x07 0x08
0x09 0x0a 0x00 0x00
0x11 0x11 0x02 0x22
0x33 0x33 0x44 0x44
0x55 0x55 0x66 0x66
0x12 0x34 0x56 0x78
0x04 0x56 0x78 0x90
0x00 0x09 0x87 0x65
0x00 0x00 0x00 0x77
0x00 0x00 0x12 0x35

// [lastlabel] at 0xd0
end
stop

And executing it provides the result:

Bretigny:ArchProjDev pete$ modelr32 label.ldr

architecture simulator 0.1v8 for 'r32_model 0.1v0'
default bin path '/Volumes/OxfordRoad/Users/pete/ArchProjDev/archModels/r32'
Going to load and execute file '/Volumes/OxfordRoad/Users/pete/ArchProjDev/archModels/r32/programs/bin/
label.ldr'

loading software..loaded; took 1031 microsecs

Run the software ..
0xa4
0x0 0x1
0x1 0x2
0x2 0x3
0x3 0x4
0x4 0x5
0x5 0x6
0x6 0x7
0x7 0x8
0x8 0x9
0x9 0xa
0xa 0x0
0xb 0x0
0xc 0x11
0xd 0x11
0xe 0x2
0xf 0x22
0x10 0x33
0x11 0x33
0x12 0x44
0x13 0x44
0x14 0x55
0x15 0x55
0x16 0x66
0x17 0x66
0x18 0x12
0x19 0x34
0x1a 0x56
0x1b 0x78
0x1c 0x4
0x1d 0x56

page 16

0x1e 0x78
0x1f 0x90

..executed 3274 instructions in 323 microseconds = 10 MIPS.

Done.

3.3. Limitations
simpleADL is fraught with limitations - and probably, errors. We don’t propose to fix the limitations,
because we intend a more complete toolkit which will be noticeably more capable. But just to reduce
frustrations from discovering limitations, here’s a list of some key ones:

Issue
simpleADL generates default instruction fetch-
and-decode code rather than using the code
specified in the .adl file (that is, it ignores the adl
file sections initial, operate and halt)

Branch offsets are always in byte distances
between instructions

There’s always one operation per instruction
The loader format is absolute, not relocatable.
The executable model is only for a single
processor

The executable model doesn’t give useful
performance info, like ipc or MIPS.

There doesn’t seem to be a way to write, say, addi
r7, 67503 in assembler source and have the
assembler treat this as a pseudo instruction which
might end up as a single op (if the literal field in my
architecture’s add immediate instruction is large
enough) or an instruction sequence to build up the
literal value somehow.

So I can write any C I like in the semantics
definition of an instruction?

Commentary
True, and this means that (for example) you can’t
specify an architecture with a delay slot; nor can
you say whether iptr is incremented before the
instruction executes.
True, and this means you can’t specify an
architecture in which the displacement is a number
of words, rather than bytes.
True, and this means you can’t specify a VLIW.
Yes.

Yes.

True enough. But it’s an architecture simulator, not
an implementation simulator. You’ll need to wait a bit
for an implementation simulator, and for the ability
to model things like caches.
But you can compare architectures. For example,
simpleRISC executes way fewer instructions than
archTest for that trivial program. Same number of
loads and stores, though. And much bigger code
footprint for simpleRISC.
Note that Article 3 - Estimating Performance, actually
shows how to create a useful performance model,
including caches.

Yes. Annoying. Sorry. SimpleADL is seen mostly as a
“oooh so that’s how it’s done ” educational toy
than a real world tool.

Yes, and that’s another thing that will likely change.
Having to correctly parse and translate the
complete C language seems like much too much
hard work for an architecture specification tool,
which is why simpleADL doesn’t even bother.
But we will likely reduce the scope of what you can
write, and how it’s written in a more realistic tool,
all the while keeping an eye on compiler generation
and pipeline descriptions (when we get round to
implementation models).

page 17

How about interrupts and exceptions?

How about MMUs and caches?

I don’t see a test suite. What makes you think this
thing is correct?

I see readMem() and writeMem() as operations, but
neither architectures have any store operations,
and there’s no example program which writes to
memory. Do these reflect a fundamental issue?

How about that compiler generator, then?

Isn’t it cheating to use specific architected
instructions to do I/O?

Sorry, we don’t do those in simpleADL.
Caches shouldn’t generally be part of an
architecture because running your code with or
without caches should in general only have a
performance impact, not a change in the results - at
least for uniprocessors (although aspects are
architected for multiprocessors because coherence
and the like). MMUs should be part of the
architecture, but we got lazy. It should be pretty
straightforward to add an MMU into your
architecture, perhaps by writing a map() function
which walks the MMU tables/PTEs and is called by a
new version of the readMem() function.
But then you’ll have to write a lot of code, in
assembler, to actually make use of the MMU. And
you will need to add in exceptions/interrupts, too.
Note that Article 3 - Estimating Performance, actually
shows how to create a useful performance model,
including caches.
It probably isn’t, but (excuses, excuses) the bugs
shouldn’t affect the general structure of the
software, so (excuses, excuses) it’s still OK as an
educational tool. Plus, finding the bugs is good for
you.
Nope. We just got lazy and wanted to get
something posted. This is one limitation that will get
fixed in simpleADL, probably using the Sieve of
Eratosthenes as the example program.
Note that the label.asm program for the r32
architecture reads memory and prints what it sees.
Not in simpleADL. Guessing at the semantics from
the instruction description is way too complicated
for an educational tool.
Somewhat. We could put a system call instruction
into the architecture and then ‘do’ the syscall inside
the model. But the effects are the same, except for
using up an opcode or two.

	1.	Introduction
	1.1.	Folder Hierarchy

	2.	Install simpleADL
	3.	Create a new architecture
	3.1.	Running simpleADL
	3.2.	This Release
	3.3.	Limitations

